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PROBLEMS OF THE CONCENTRATION OF ELASTIC
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A spherically multilayered medium, whose elastic parameters change abruptly on the spherical surfaces, with defects in the form
of cracks or thin rigid inclusions, is considered. The method of solving problems of the stress concentration near such defects is
based on the introduction of linear combinations of the displacements and stresses as the fundamental unknowns. This enables
the difficulties related to the presence of an arbitrary number of layers to be effectively overcome. The method is described initially
for an unbounded elastic medium and defects of spherical form, situated on the surfaces where the elastic parameters change
(interphase defects) and a way of extending this to the case of an elastic medium of finite dimensions, defects of other forms
and not situated on these surfaces, is indicated. The method is described in detail as it applies to the case of a two-layer medium
with an interphase crack when a torsion centre at the origin of coordinates acts on the medium. The problem is reduced to an
integral equation, an effective method of solving it is given, and a formula is obtained for the stress intensity factor. © 1999 Elsevier
Science Ltd. All rights reserved.

Axisymmetric problems of stress concentration in a two-layer medium with a crack were considered
earlier in [1, 2].

1. THE INTRODUCTION OF NEW UNKNOWN FUNCTIONS AND THE
METHOD OF FINDING THEIR TRANSFORMANT

We will denote the components of the displacement field u, = u/(r, 8, ¢), ug = ug(r, 6, @), u, = uy(r,
0, ¢) as follows: 2G[uy, ug, U] = [u, v, w] (G and p are the shear modulus and Poisson’s ratio) and we
will conventionally indicate a partial derivative with respect to r by a prime, a derivative with respect
to 0 by a dot and a derivative with respect to ¢ by a comma. Instead of the displacements v and w we
will introduce the new unknowns 2(r, 6, ) and z*(r, 6, ¢), and instead of the shear stresses 1,9 = 19 and
T = T, We will introduce the function 1(r, 8, ¢) and t*(r, 6, ¢) by the formulae

v to
. Z . w . 1 . To
sinGy .f=] sin@] £ , sin@) =1 sin@] £
4 v T To
w To

Here the Lamé equations, written in a spherical system of coordinates [3], are separated into an
harmonic equation for z* and a system of two equations for  and z. In order to simplify the search for
the functions introduced above, we will change to Fourier transformants

(1.1)

’f [u(r.G.(p).z(r.Q,«p),z'(r,

e 9.(9)] d(p’n=0,t]'i2,..- (1'2)
e

(4,(r,8),2,(r,0),2,(r.0)] =

-x
and Legendre transformants (P;(z) is the associated Legendre function)
T B (cos8)u,(r,8),2,(r,0),2,(r,8)

[ttt (), 2ok (), 2o (P)] = £ cosec®

]de, k=0,1,2,... (1.3)

for which we know the inversion formulae
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0,0)= 3 49 . l _ (k=lnl)! 2k +1
u(r,0,9) "Ew ) un(r’e) kgnlokn“nk(r)Pkl (cos0), Uk"—-__(kﬂnl)! 2 (1-4)

It can be shown that the Fourier transformants of the stresses can be expressed in terms of the new
unknowns as

(1-2)0,,(r,8) = (1- wu; (r,0) + pr ' [2u, (r,8) + z,(r,0)]
2r, (r8)=r*(r''z,y = Vu,, 2r(r8)=r2(r"'2y (1.5)
V.. f(r.8)=(sin8)2n f(r,0)—(sin0)'[sin 6f " (,0)]

As a consequence of the fact that the function z* is harmonic, its Fourier-Legendre transformant
Z3(r) will, in general, be defined by the formula

(=Xt + Yr ™ k=0,1,2,..., n=0%122,... (1.6)

where X,,; and Y, are arbitrary constants.

In order to obtain similar general representations for u,,(r) and z,(r), it is convenient to start
from the formulae obtained by Lamé [4] for the displacements u,, ug, 4, and written by Ulitko 5] in
the form

k
“r("e"p)= 2 Z

k=n n

Plnl (n)

% (cose)ufin (r) (1.7)
k 21t0‘b,e ?

uL"'(r) =MIA£n)rk+l +B’(‘n)rk—l +HIC:(¢")’_" _D'(‘n)r-k-z
My =k-2-4u, p;=k+3-4p

Here A, B®, ¢, D{ are arbitrary constants. Changing the order of summation in the double
series (1.7) we apply integral transformations (1.2) and (1.3) to it. As a result we obtain the equation
un(r) = 2G(2noi,) "2uf(r), and hence

U (ry = Wi XS r !+ XL P Sk Yl k2 (1.8)

where X.%', Y;% ! are new arbitrary constants. Carrying out similar operations on the formulae for ug
and u,, from [5], taking formulae (1.1) into account, in the transformants having the form

Ufl
. 2 0 W,
sin6j ,f=— sin@ftin 1.9
o2 o 19)
n
we obtain
=2 (1) = K g X5r* ! + (k+ DXL = (k4 1, o YOr ™  + kY, rt2 (1.10)

After applying transformation (1.2) to the second formula from (1.1) and applying transformation
(1.3) to formulae (1.4) and subsequently using (1.8) and (1.10) we obtain

Ok =HEXGr + (k= DXL r 2 —pg Y0 r " 4 (k+2)Y) 43

~ T =AU XOr* + (67 = DXL r 572 4 (k+ DPEYS !

—k(k+ )Y S =k(k-1)-2-2p, pj=k>-2+2))

2Ty = Xy (k=" = Y (k+2)r7*72 (1.11)

We will use the relations obtained to solve this problem. The elastic medium fills the outside of a
spherical cavity of radius R. Shear stresses are applied to the surface of this cavity, i.e.
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%l =10 l,.g =Asinf, 0<O=mx (1.12)

It is required to find the stresses and displacements. Since there is axial symmetry, we must put
n = 0 in all the prevxous formulae, since by (1.2) ty(r, 8) = Trgs wo(r, 8) = w(r, 6). Using the second
formula of (1.1), written in terms of transformants, and taking (1.12) into account, we find that
TH(R, 8) = 24cos6 and correspondingly (3y; is the Kronecker delta)

1o, (R) = 4AQk+1)7'8,, (1.13)

If we construct a solution that is regular at infinity, then, in formula (1.11) for 1;,(r) we must put
Xy = 0 and obtain Yy, from condition (1.13); we will thereby find the transformants t¥4,(r) and z§(r).
Then, using the corresponding inversion formula (1.4), we finally obtain

’ Mcos© 8TAR®
Q)= —, M=——
cos®, z,(r,0) e 3

» M
T0(r.0) A (1.14)

It can be shown that M is the torque produced by the shear stresses (1.12).

If we now allow R to approach zero and the constant 4 to approach infinity, so that the torque remains
unchanged and equal to the specified M, formulae (1.14) give the stress field and the displacements
from the torsion centre at the origin of coordinates.

As can be seen, the new functions introduced can be found fairly simply. By determining them the
functions v, and w, can be found as follows. Using the obvious linear combination of Eqs (1.19), we
obtain differential equations for v, and w,, which differ solely in the right-hand sides and can be solved
simply using integral transformation (1.3). As a result, we arrive at the formulae

v, hO)|_ * wnd )

alls = —[ei ot 2 z,(r, d

"Wn(’ve)il (j)smt¢,,(0,t o R tz:(r,t) Fin (r.t)“ t

®,(0,1)= EI;"I k(k )P'"'(cosO)P""(cost) (1.15)

This formula is unsuitable when n = (), i.e. for axisymmetric problems, but in this case, putting
n = 0in (1.9), we can obtain the simpler formulae

vo(r®)__1 °ﬂz9(r,t) .
IIWo(r,e) an L |z (1.16)

2. THE REDUCTION OF PROBLEMS OF STRESS CONCENTRATION IN
SPHERICALLY MULTI-LAYERED MEDIA TO A SYSTEM OF
EQUATIONS AND AN EFFECTIVE METHOD OF SOLVING IT

Consider the following problem. In an unbounded spherically multilayered elastic medium, arbitrarily
loaded by body forces, there are defects in the form of cracks or thin inclusions, situated on the spherical
surfaces where the elasticity constants change. It is required to determine the stress and displacement
distribution in such a medium.

We will denote the radii of the spherical surfaces on which sudden jumps in the elasticity constants
occurbyR(i=0,1,2,... m) so that when R;_; < r < R; Poisson’s ratio and the shear modulus take
values y; and G;, where R_; = 0, R,,,; = «. We take as the fundamental unknowns the functions
introduced above, the Fourier-Legendre transformants of wh1ch are given by (1.6), (1.8), (1.10) and
(1.11), and each layer has its own arbitrary constants X%, Y91 and elasticity parameters y; and G..
For example, for u,(r) we have the formula

it (P) =; Xper® iy +; X~ s Y g — X r ™ il () 21)
My =k—=2+4p,, uy=k+3-4p;, i=0l,.., R_ <r<R

Similar formulae exist for the remaining transformants
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k(D i 2Dy O (r), Ty (P) (D) (22)

Here, in order to ensure that these transformants are regular at zero and at infinity, we must
put

o¥at =0 Yok =0 Yk =00 o) Xok =t Xk Zpas X =0 (2.3)

When writing (2.1) we took into account the fact that both forces may be applied to each spherical
layer and that each force may give rise to its own stress and dlsplacement ﬁeld ’I}ansformants (1.8),
(1.10), (1.6) and (1.11), corresponclmg to this field, will be denoted by 1%, 2%, 220 624, % T2 Since
we can assume that this field arises in an unbounded medium with constants p; and G;, the components
of this field can always be determined using well-known formulae of the theory of elasticity, and we
will therefore assume the transformants mentioned to be known. Hence, we need to determine the
constants Xy, X%, Yoo Y% i=0,1,...,m + 1). Because of the introduction of the functions
z(r, 9 z*(r, 9, ¢), t(r, 8, @), t*(r, 6, ¢) this problem splits into the problem of finding X, ;Y,x and
X0 ,,)‘ separately.

We will write the method of solving this problem initially as it applies to X, ;Y. We must primarily
ensure that the displacements and stresses are continuous forr = R; (i = 0, 1, . .., m). In this case we
are considering the stresses 1,4 and 1, in terms of which t* is expressed, and the displacements ug
and u,, which define z*. This leads to the need to equate the function z,; on the ith layer with r = R;,
divided by 2G;, to the analogous value of the same function on the (i+1)th layer, divided by 2G;,,.
The continuity of the stresses 1,9 and 1, with 7 = R; leads to an analogous operation with the function
T*.

This holds provided that there is no defect (a crack or an inclusion) in the elastic medium when
r=R;(i=0,1,...,m). Since we are proposing to consider the case when there is a defect on the
spherical surface r = R; in the section [y(®; < 6 < w,), we need to introduce the jumps

(2G;)'z,(R; -0,0) - (2G;,,) ' 2, (R, +0,8) = (2, (R;,8)) (24)
T,(R; —0,8)-1,(R, +0,0) = (T.(R,,0)), 08¢l
and their Legendre transformants

(z,(R))
(T, (R, 1))

We will write the condition for the displacements and the stresses to be continuous when r = R;
(i=0,1,...,m),taking into account the presence of the jumps (2.4) and (2.5), in the form

*1

' "fl i=0,1,...,m (2.5)
iTnk

| sint Pi"(cost)dt =

b

ixnkRik + iYMR-b_l _ i+1Xnk _ i+lYnkRi-k—I =. Z‘k
2G; 26, 2G,  2G, "
Xk =DRE = Yy (k+2)RT* 2~ X, (k=DRF +
i Yk + )R =2,T,, (i=0,1,...m) (2.6)

Here
.'Z;k = Z:II‘( +isl ZZE(R.-)(ZG.-H)" —i 7-;2(Ri X2G; )™
iTn‘k = Tk i 1;2(Ri)‘i TZQ(R«')

In order to determine the coefficients ;X and ;Y from (2.6), we will introduce the vectors

x.=iix"kH f=2l|lz;k
N ' Tt

which enables Egs (2.6) to be written in the form

. i=0,1,...,m+1 2.7)
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ax;—bx;, =1, X =cx; ‘bflfi; Ci =bi_lai (2.8)

_ R,‘kcl—l Ri—k~|Gi—|

. RiGy  RMIGH
(s k-1 —k—2
(k-DR™ —~(k+2)R;

[

(k—=DR¥'  —(k+2)R*2

Using representation (2.8), the solution of Egs (2.6) must be obtained in the form

i=l ——
x; =C%x,-% C\087'E, i=0,m (2.9)
1=0
Here
CP=cicjyey, I<ji CP=c;, 1=ji € =1, I<j (2.10)
where [ is the 2 x 2 identity matrix.
Here, by (2.3)
Oxnk " n 0 H
Xg = v Xy = (211
0 n 0 * m+lYnk )

In order to obtain the values of these vectors we put i = m in (2.8) and substitute the expression for
Xm, taken from (2.9) using (2.11). As a result we obtain

X 0 m-1
B, °0"" l—b,,," " 'I=f,,, + ’}:0 Di™1, 2.12)
m+1in =
where
B(m) B(()m) dl.m dl.m
B,=a,Co | ® "0 pm=g clthpt =70 "0 2.13
" e Bl P Tl @13)
Solving system (2.12) we obtain
Xt = A (B[ Py — b P ]
w1 Yot = A [ B Fop — BEOF ] (2.14)
Am = b7V BG" - b BV
Here, by (2.7), (2.8) and (2.12), (2.13) we have
b = RETIGL, B = —(k +2)R;E?
. m—1 . Y
Fy = 2['"an + Eb (1 Zndgy" +, Tuds™ )]
(2.15)

. m—1 « .
F! = 2[mT,,‘r + Iz(.) (Zudig" + Todli™ )J

Formulae (2.9), (2.11) and (2.14) completely define the unknown coefficients occurring in the expres-
sions for the functions zy(r) and t7;.(r).

We will use this scheme to determine the remaining coefficients ;X5land Y% (i = 0,1,...,m + 1),
for which we will write the condition for the functions u,(r), z,(r) and 6, (r), T.«(r) to be continuous
on each spherical surfacer = R; (i = 0, 1, . . . , m), taking into account the presence of the defect, i.e.
involving the Legendre transformants 284 ith of the jumps

2,(R; = 0,6)(2G;)™" - z,(R; +0,0)2G;,,) ™" =(z,(R;.0))

(2.16)
T,(R;—0,0)~-1,(R; +0,0)=(1,(R;,0)), @€l
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X&I u,-r,‘i 'UMI
Xl |iv z,.\
Unk =itk +i U (RG0! = u (R)2G)™

i Zuk =i Zak +ist 2R )2G11) ™ = ZH(R)2G,)™

iZnk =i Ok +is1 Ot (R) —; Oy (R))

Tk =i Tk i1 72k(Ri)‘i Tgk(Ri)

defined by formulae similar (2.5).
Introducing the vectors

i L

T (2.17)

xnk' lYnk" nke i Snk

we can write the displacement continuity conditions

a(')‘xnk 'a?)mxnk +BY; e =B, Yu =i Vo i=01...,m

* it

- 2 -
o = RE'E R, 1 ol = RV i miR? 1 (2.18)
2G; _iu;+2le'2 —k+1 2G;,, —i+l l.l;.,,zR,zk k-1
p =R~ - | My R? B = R—k i R? -1
2G; | (k+ 1)R2 -k’ Mo (k+DRY  —k

and the stress continuity conditions

YOXn =1, X + 895X, =8P, Y, =S, i=0,1,...m

X

¥ __' iMER? k-1 ® " i BER? k-1 (2.19)
=2 ’ =2 )
R; — il kRE 1-k? R; —inME R 1-k7
5:“3 MR} —k-2 5" - istHE R k-2
R L mik+DR? —kk+2)| R | mIG+ DR —k(k+2)

We can reduce the system of equations (2.18), (2.19) to Eq. (2.8), already investigated, if we introduce
four-dimensional vectors and the corresponding matrices

a(i) () (‘i) si)
x—n ' ﬂ a=0 Pl 5 of B (2.20)

.Y(l) 8(1) ‘YS-') 8(.i)

Consequently, the solution of system (2.18), (2.19) can be written in the form (2.9), but the vectors
and matrices must be taken as in (2.20). Here formulae (2.11) still hold, only instead of (X,; and ,,, 1 Y,
we must take the vectors ¢Xpx, ,+1Yn« It can be shown that formulae (2.14) hold for determining them
with the following correction: ¢X,,; and ,,+,Y,x must be replaced by X,;; and ,,, 1Y, while FY and F},
must be replaced by

m—1
F =nVu + 1=Zo (d(l)bmlvnlr +dg" Snk)
l mt (2.21)
Fnlc =msnk + z (d 'l'(')'lvuk +d"l’:'lsnk)

respectively, where in the representations of the matrices (2 13) their components B ) and d’,{” are
2x2 partmoned matrices and, in particular, the numbers 57, and b, must be replace({ by the matrlces
8™ and p{™, respectively.

Moreover, in the formula for ,,,Y, the matrix A, must be replaced by the matrix Am =
B{s(™ _ B{MRI™. Hence, all the coefficients Xy, ;Y ,X°)<, ;Y% are obtained, and knowing them we
can determine the transformants (2.1) and (2.2).
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The solution of this problem will be completed if we obtain the jumps (2.4) and (2.16). To obtain the
corresponding equations we need to substitute the coefficients obtained into (2.1) and into the similar
formulae for (2.2) and invert the Legendre transformants obtained. By subsequently satisfying the
conditions at the defect in the Fourier transformants we can obtain integral and integro-differential
equations for determining these jumps.

In order not to obscure the matter with lengthy calculations, we will carry out these operations in a
special case of the problem under discussion.

3. REDUCTION OF THE PROBLEM OF THE STRESS
CONCENTRATION NEAR A CRACK WHEN ACTED UPON BY A
TORSION CENTRE TO AN INTEGRAL EQUATION

We will assume that the spherically multilayered medium described above is subjected to a torsion
centre with torque M at the origin of coordinates. In view of the axial symmetry (the required and
specified functions are independent of ¢) we must put n = 0 in all the formulae presented above. The
stress and displacement fields will be determined solely by the functions 1, 4, and, by (1.1) and (1.9),

by the functions
To(", 9 _ l a T,e(r, 9)
lzo(r, 0)1_ 5in@ 90~ 2Gu,(r, 6) 3
respectively.
In the case of the loading considered, in relations (2.6), by (1.14), we must take
IMcosO . Mcos0 .
oTo (r 0) =", o20%(r, 8) =———2= 0(r, 8)=,20(r, 0)=0 (3.2)
4nr 2nr
i=1 2,..m
and therefore
_ M
R =5 mg' ozof (Ro)=~20r, jwak =izqy =0 i=1.2.. (33)

To solve this problem we must first solve the system of equations (2.6) using (2.9) and (2.14). To fix
our ideas we will confine ourselves to the case of a two-layer medium (m = 0) and we will assume that
there is an interphase crack atr = Ry, i.e. [ = [0, 0] in (2.4) and (2.5).

If we assume that the sides of the crack are not loaded, we have (x§(Ry, 8)) = 0, g1’ = 0 and therefore,
by (2.6) and (2.15)

i = 2lo 2o ~(2Gy) 0zgs (Ry)), Ry = =T (Ry)2 (3.4)

Moreover, by (2.10) C% = I and hence By = ay.
In this case, of all the coefficients in Egs (2.6) we must only obtain ¢Xy, and ;Y. We find them using
Egs (2.14), taking (3.4) and (3.3) into account. We obtain

*) 0 *)

o Xoy = 2(k+2)02 o%oi + 8 X - 2k - 1)(_;:,_01(,* +g (35)
RoYye Y

(42, q,]- Llk+2-3y, k+2], ¥, =2-y+(1+7)k, y-G—

R& G,

Substituting these expressxons into the corresponding formulae for z&(r) and ;t§(r) we obtain from
(2.2), withi = 0 and i = 1 (n = 0) and taking (2.3) into account, the Legendre transformants of the
functions z}(r, ©) and t4(r, ) when 0 < r < Ry ({ = 0) and Ry < r < « (i = 1). Subsequent inversion
using the appropriate formula from (1.4) with n = 0, enables us to obtain the values of these functions.

For example, for t§(r, ) when 0 < r < Ry we will have (using (3.2))
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(k= 1)(k +2)P, (cos 0)}1 (cos t)

rty(r, 0)= Goj(zo(Ro t))sth(Ro)

27, (2k +1)
+2M(4nr?)” cos0° (3.6)
In order to obtain the equation for determining the jump
. _2Gp 9 . _
(z0(Rot)) = Srasin (g (Rot)) = (1) (3.7)

(the first equations follows from (3.1)) we must implement the condmon at the defect (in this case, a
crack): the stress 1,,(7, 8) is equal to zero on the sides of the crack r = 0 and r = Ry + 0, which
means that we must do the same for t§(r, 8). Since the condition (t§(R,, 9)% 0 has already been used
to obtain (3.5), it is sufficient to implement the condition

T5(R;'.0)=0, 0<06<a (3.8)

Substituting (3.6) into (3.8), we obtain the necessary equation for determining the required jump
(3.7). In order to reduce it to a simpler form, we must take into account the fact that

(k+2)k=1)=k(k+1)-2, VyP(cos8)=k(k+1)P,(cosO)
This enables the equation obtained to be written in the form

(Vo-2)ly(8)=-Acos®, 0<O<w; A=3M(4RIGy)” (3.9

. - @ . . . = 2k+1
Yo (8)=[x(f)sintSy(8, )dt, S$,(0, =Y P, (cosB8)P, (cost)
0

k=0 Vg

In order to convert the integro-differential equation obtained into an integral equation, we carry out
the following operations. Bearing in mind that

(Vo —2)y(8) = -Iy(8), Iy(8)=y"(8)+ctgBy’(8)—2y(6) (3.10)

and [P;(cos ) = IQ;(cos 0) = 0 (Q(z) is a Legendre function of the second kind), we write the general
solution of the differential equation corresponding to (3.9) and (3.10), regular at zero, in the form

9
Y, (0)= A(j)costl((e, tdt + %ﬁ (cos®) = £*(8) (3.11)

where C, is an arbitrary constant, and its fundamental function (solution) has the form

VRK(®, 1)=2sint[ P (cos8)Q,(cost) - B(cost)Q, (cosB)]
F(cos8)=cosO, Q(cos8)=cosBinctg 401

Hence, the integral equation of the problem considered can be finally written in the form
o
[x(t)sint S3(8, Ndt=f"®), 0<O<@w (3.12)
0

3V (1) =(C, +2A)cos8 - 2A(1 - 2cosO1n cos 446)

(the expression for the right-hand side is obtained after evaluating the integrals in (3.11)). The arbitrary
constant C; which occurs here is obtained from the condition for the crack to be closed, which, by virtue
of (3.7), can be written as

'fsin 0%(8)d8 = 2G[sin e(uw(koe))]g =0 (3.13)
0
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4. SOLUTION OF THE INTEGRAL EQUATION

We first separate the irregular (weakly polar) part from the kernel (3.9) of integral equation (3.12).
To do this we use the easily verified relation

5508, N=2(y+1)7'[So(8, 1)+ % (Y-1)S5(8, 1]

where

55(6, t)=-;— 5 P(cosB)P,(cost), SMO, )= 3 fe(cosOF(cost) 4.1)
k=0

k=0 27*
The first of these series (the weakly polar part of the kernel) is added [6] to the discontinuous
Weber-Sonin integral, i.e.
1 ]
so(e, 1= Wo(tgéa’ t8/2‘),
2cos Y5 0cos 4t

However, the second series from (4.1) will also not be a continuous function. In order to convince
ourselves of this and to separate the discontinuous part, we note the well-known relation

Wo(x, y)= ;flo(tx)fo(ty)dt (4.2)

g :(kk+l D P,(cos0)F(cost) = -—-;——lnsing--—lncos-;-
Then, if we take into account the directly verifiable equations
1 _ 1 go2zy 1 2k =1( 1 _B)
Y, (Y+Dk+B)’ 1+y" k+P 2k(k+1) kl2(k+1) k+B
it can be shown that
s}, = 2(Yl+l)[2l( ;f\;) —lnsin—g-+ Ry(®, :)} (43)
1 __B

By P
Ry(8, 1) = go p P, (cos8)P(cost), B, “2k+1 k4P

The last function will be continuous.
Taking (4.1) and (4.3) into account and also condition (3.13) for the crack to be closed, integral
equation (3.12) can be written in the form

Ly= I [S0(8, 1)+ MRo(®, Dlsint x()dt = 3. C; P(cos8) -
i=0
—82 (e)v 0<0=<w; 4\ = 3(‘Y - ])(Y + 1)—1 (44)

(1+2cosBIncos —), G = A,j' sinzx(2)In cos-;-

8:00)= TA(Y L)

where C7 is a new arbitrary constant, related to C;.
Accordmg to the structure of the right-handside, the solution of Eq. (4.4) must be constructed in the
form of a series

) *
x(0)= Z()q %i(0)—%,(8) (4.5)
each term of which satisfies one of the equations
Ly;(8)=g,(8), 0=6=<0, i=0, 1, 2; g(®)=P(@®), i=0,1 (4.6)

If these equations are solved, the constants C§ and C7 are found by implementing condition (3.13)
and the last equation of (4.4).
In order to reduce Eq. (4.6) to a known form, we make the replacements
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0 t (0]
t8-2' = ax, tg-2- =ay, a= tg; 4.7
2ay(2arctgay) g;(2arctg ax)
X.(y)= , E(x)=3"—_—_——°
i) [1+(ay)?Y =t @i

Then, instead of (4.6), we will have

1
[(Wo(x, y)+ADy(x, MyX;(y)dy=F(x), 0<x<I (4.8)
0

0 t
Dy(x, y)=[2acos5cosER0(9, Dlo=2arctg ax, =2 arctg ay

Integral equation (4.8) has already been encountered in contact problems [8]. To solve it approximately
it is convenient to use the method of orthogonal polynomials [8}, in view of the presence of the spectral
relation AS.2 from [8], according to which, the solution of Eq. (4.8) is constructed in the form (P P(z)
is a Jacobi polynomial)

= XipPA(1-2y?
X=X Xihe > Y ),
k=0 ‘Jl—y

The next step in the method of orthogonal polynomials [7], as it applies to this equation, reduces it
to an infinite system

P A(1-2y%) = B (1= %)

(i) () = g = Ly oy xtd =
v +lk§odj,‘y," =F", i=0, 1, 2; ;" =v,X}", V’_j 2@ 1) 4.9)

Py (V1-a(1846)*)
V1-a2(1g46)’

FO = @ 1g )56g,(0)Q; (6) 0, 0)©)=
0

2v;a"cos /0

a, =1 2& g 4018110, OO () o
0

2v,v,a’ cos %58cos 4 ¢

The infinite system obtained must be solved approximately by the reduction method; the
convergence of this method can be proved using the scheme described earlier in [8].

If the infinite systems (4.9) are solved fori = 0, 1, 2 and the constants Cy and C, are obtained from
the conditions indicated above, the solution of the equation under discussion is obtained from (4.5)
or, by (4.7) and (4.9), from the formula

_ 2ay(2arctgax) _ X, P> %(1-2x7)
(1+ (ax)? ]% k=0 \/1 —x?

X(x) (4.10)

X, =CoX?+C XV - X

5. CALCULATION OF THE STRESS INTENSITY FACTOR
For the problem in question the stress intensity factor is found from the formula

K"I = el;lmo’t,v(Roe)\pﬂRo(e—O)) (5.1)

Taking relation (3.1) into account we obtain

18 .
T,0(Ro. e)——s—i;—égsmno(ko, t)dt (5.2)
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Using (3.7) and (3.9) we obtain from (3.6)

RyTy(Ry —0,0) = Gy[(Vy —2)Y, (8)+ AcosB], 0<O=<mx (5.3)
In view of the fact that
1 9. . dYy (8)
mgsm tVoYO (t)dt = —-%.T
formula (5.1) can be written, using (5.2), in the form
2n .
Ky = ‘J R, R 0o, lim v8-w—o Yo © (5.4)

When obtaining this formula we took into account the fact that all the functions which occur as terms
in the formula for 1,,(Ry, 6), which have a finite limit as 6 — ® + 0, drop out. On the same basis, by
virtue of (3.9), (4.1) and (4.3), instead of (5.4) we can write

2n . 240-
K]“-':— — lim

Ry 0-w+0 v+

If we take (4.2) into account in the last integral and make replacement (4.7), we obtain the
relation

9 ¥ yo(e)=Tx(t)sinwo(e, t)dt (5.5)
0

Yy(x)

¥,(0) = Yy (2arctg ax) = ————,
O (@1

. i
Yo(x) = [ Wo(x, y)X(y)ydy (5:6)
0

Hence it follows that

2a¥}(0) = [1+(@x)* 14 F(x) + axyt + (@x)? Ty (x)

and hence
81 sec 4o AN
Kp=- =220 2V Nz tim V22 -1 ,
m Ry, sin®@ l+7y a0 V¥ Hg(x) G
i= lim \[Zarctgw;—Zarctga =\lsmo)
x—1+0 x° -1 2

In order to take the limit for N we must bear (5.6) and (4.10) in mind, which enables us to write

N=3% X lim —2&&) _ L Wo(x )Py (1= yP)dy _
= ¢ im —17 Ak(x)—j' =
k=0  x—I+0 (x2_1) A 0 y—'Jl— )

=T(4+ K20+ 20k x 2 F4+k, Y+ k Y+ 2k, x72), x>1 (5.8)

The expression for the last integral in terms of the hypergeometric function is taken from [8]. Carrying
out the differentiation using the well-known rules for the differentiation of hypergeometric functions
and extending the result obtained analytically in the neighbourhood of unity, using formula (9.131.2)
from [9] we obtain

Y R L
T e AT (59)

Using (5.7), (5.8) and (5.9) we finally obtain

K 21‘ SeC/z haid Xk
= 1+ |/ Rysin® =0 ['(}4+ k)k!
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If there are no layers, i.e. Gy = Gy, y = 1, A = 0, integral equation (4.8) has an accurate solution, as
was shown previously in [5]. In this case the infinite systems degenerate into explicit formulae

Yk(i) - Fj(i) i=01,2%k=0,1,2..)

6. CONCLUSION

The proposed method has been described as it applies to the case when the defects are situated on
spherical surfaces where the elasticity constants change (interphase defects). To cover the case when
there is no interphase defect, one can proceed in two ways: (1) introduce, in addition, two spherical
layers with the same elasticity constants, on the adjacent boundary of which the defect is situated, and
(2) together with the term which takes into account the action of the body forces, applied to the spherical
layer, where the defect in question is situated, one can introduce a discontinuous solution of Lamé’s
equations for this defect. The second way has the advantage that it enables one to cover the case of a
non-interphase defect of arbitrary shape.

The method can be extended fairly simply to the case of a bounded spherically multilayered medium.
We will describe the additional operations which are necessary to do this.

Suppose the spherically multilayered medium considered fills the region Ry < r < R, Suppose that
the displacements are specified on the boundary r = R, and, consequently, their Fourier-Legendre
transformants are specified also. We will denote this transformant of the function z*(r, 6, @) by 4.
Then, instead of the displacement and stress continuity conditions in (2.6) atr = R, we must write the
boundary condition

Zui (Ro) =\ X RS + Y R + 2% (Ry) = Ay (6.1)

From this equation we obtain ,Y,,; and hence, from (2.7) we can write
X =I_R(;k+l|lxnk "'R(')MI(I)*AM =12, (Ry)) (6.2)
The following formula holds for the remaining required vectors
X; =C}'_’,x|+:§C}’_'j')b,"f,, i=1 2,...,m-1 (6.3)

obtained in exactly the same way as (2.9).

If we assume that the stresses and, of course, their Fourier-Legendre transformants, including the
transformants t,,(r) and 7 (r), are specified on the other boundary r = R, of the elastic medium, similar
operations are carried out. Suppose, for example, we are given the latter, i.e. t7x(R,,) = B,. Then, instead
of the displacement and stress continuity conditions at r = R, in (2.6) we must satisfy the boundary
condition

20 (Ry) =Xy (k= DR =,V (k+2) RF24 T2 (R, )2 =28,
Using this, in the same way as for (6.2), we will have

2k +1 _1! 2
x,,,=|Rm (k+2)(k-1) l By —nT2(R,)] (6.4)

) A
1 miak " —)RET A

It only remains to obtain X, and ,, Y. This is done using the same operations as when obtaining
oX and oY, from the system of equations (2.6), i.e. we assume i = m — 1 in (2.8) and substitute (6.4)
there, while the expression for x,,_; is taken from (6.3). We thereby obtain two algebraic equations for
ﬁnding X and Yy
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