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A spherically multilayered medium, whose elastic parameters change abruptly on the spherical surfaces, with defects in the form 
of cracks or thin rigid inclusions, is considered. The method of solving problems of the stress concentration near such defects is 
based on the introduction of linear combinations of the displacements and stresses as the fundamental unknowns. This enables 
the difficulties related to the presence of an arbitrary number of layers to be effectively overcome. The method is described initially 
for an unbounded elastic medium and defects of spherical form, situated on the surfaces where the elastic parameters change 
(interphase defects) and a way of extending this to the case of an elastic medium of finite dimensions, defects of other forms 
and not situated on these surfaces, is indicated. The method is described in detail as it applies to the case of a two-layer medium 
with an interphase crack when a torsion centre at the origin of coordinates acts on the medium. The problem is reduced to an 
integral equation, an effective method of solving it is given, and a formula is obtained for the stress intensity factor. © 1999 Elsevier 
Science Ltd. All rights reserved. 

Axisymmetric problems of stress concentration in a two-layer medium with a crack were considered 
earlier in [1, 2]. 

1. T H E  I N T R O D U C T I O N  O F  N E W  U N K N O W N  F U N C T I O N S  A N D  T H E  
M E T H O D  O F  F I N D I N G  T H E I R  T R A N S F O R M A N T  

We will d e n o t e  the  c o m p o n e n t s  o f  the  d i sp l acemen t  field Ur = Ur(r, e, cO), uo = uo(r, e, co), u~ = u~(r, 
0, ¢p) as follows: 2G[u,  u~ u,] = [u, u, w] (G and ~t are  the  shear  modu lus  and  Poisson ' s  ra t io )  and  we 
will  conven t iona l ly  ind ica te  a pa r t i a l  der ivat ive  with respec t  to r by a p r ime ,  a der ivat ive  with r e spec t  
to  0 by a d o t  and  a der iva t ive  wi th  r e spec t  to ¢p by a comma.  In s t ead  o f  the  d i sp l acemen t s  v and  w we 
will i n t roduce  the  new unknowns  z(r, O, q~) and z*(r, 0, ¢p), and  ins tead  o f  the  shea r  s t resses  x,e --  ~0 and  
~r~ = % we  will  i n t roduce  the  funct ion  x(r, e, cp) and  x*(r, O, ¢p) by the  fo rmu lae  

sin0[X, II I% [ I]x~ 

Here the Lam6 equations, written in a spherical system of coordinates [3], are separated into an 
harmonic equation for z* and a system of two equations for u and z. In order to simplify the search for 
the functions introduced above, we will change to Fourier transformants 

[u.(r,e),z.(r,e),z•(r,e)l= i [u(r'e'~)'z(r'e'~)'z" (r'e'~)] d~,n=O,±l.:f.2, • (1,2) -~ ~in~ "" 

and Legendre transformants (P~(z) is the associated Legendre function) 

[unt(r),z.k(r),z'~(r)] : i ~"'(cose)[u"(r'O)'z"(r'O)'z*~(r'e)]dO, k =0,1,2 .... (1.3) 
o cosec  0 

for which we know the inversion formulae 
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u(r,O,~p)= ~ un(r 'O)  
n=-** e -in~ ' 

(k-lnl)! 2 k + l  (1.4) u,,(r,O)= ~. O,nun,(r)~nl(cosO), ff,n = 
*=i.~ ( k + l n l ) !  2 

It can be shown that the Fourier transformants of the stresses can be expressed in terms of the new 
unknowns as 

(1 - 2}X)C;rn ( r . 0 )  = (1 - }~)u~ ( r . 0 )  + g r  -I [2u ,  (r.  0 )  + Zn ( r . 0 ) ]  

2rtn(r ,0)= r2 ( r - l zn )  " - v n u n ,  2rt~(r,0)= r2(r-lz*n)" (1.5) 

Vnf(r, 0) = (sin 0) -2 n2 f ( r ,  O) - (sin 0)-I[sin Of" (r, 0)]" 

As a consequence of the fact that the function z* is harmonic, its Fourier-Legendre transformant 
z ~ ( r )  will, in general, be defined by the formula 

z*nk(r) = Xn, r k + Ynkr -k-~ , k = 0,1,2 ..... n = 0,_+1,+2 .... (1.6) 

where Xnk and Ynk are arbitrary constants. 
In order to obtain similar general representations for Unk(r) and Znk(r), it is convenient to start 

from the formulae obtained by Lain6 [4] for the displacements u,, u0, u,  and written by Ulitko [5] in 
the form 

~nt(cosO)u~n)(r ) 
u/r,O,~0)= Y. E (1.7) 

k=n n=-k V2~t~kn e -inq~ 

ulnl(r) : I '+a(n) 'k÷'  + P a  nk " B(k n'rkI' +"kC (-)r-k - D(n)r -k-2 

~t~ = k - 2 - 4 ~ t ,  [t~ : k + 3 - 4 ~ t  

Here A (n), B (n), ,..(n) ,-,(,) ~-k , ~'k are arbitrary constants. Changing the order of summation in the double 
series (1.7) we apply inte~al transformations (1.2) and (1.3) to it. As a result we obtain the equation 
u~( r )  = 2G(2uakn)-mu(knY(r), and hence 

u.k ( r ) = l~ ~ X°, r k + ' + X in, r k- i + l£~ Y° r - '  - y2k r -k-  2 (1.8) 

where X° i  1, Yn~ 1 are new arbitrary constants. Carrying out similar operations on the formulae for u0 
and u~ from [5], taking formulae (1.1) into account, in the transformants having the form 

we obtain 

. . . . .  o k+l +(k  + l)X~kr ~-I - ( k  + 1)~k_2Y°r -k +kY,~r -k-2 (1.10) -Z.& (r) - KJxk+2 A~kr 

After applying transformation (1.2) to the second formula from (1.1) and applying transformation 
(1.3) to formulae (1.4) and subsequently using (1.8) and (1.10) we obtain 

_..o.-o k+(k ! k-2 1)X~kr - o ..0 - t - |  +(k+2)yInkr- t -3 Grn k -- ~x k Ankr -- _ ]~k+21nkr 

x 0 k l -k-2 -Z,~ = k~tt+lX~kr + (k 2 - l ) X ~ . r  + (k + l)~t~Y°r -k-! 

I -k-3 o - k ( k + 2 ) Y ~ k r  (Ilk = k ( k - l ) - 2 - 2 ~ t ,  ~tl =k2 -2+2~ t )  

2"{~ = Xnk(k - 1)r k-I - Ynk(k + 2)r -k-2 (1.11) 

We will use the relations obtained to solve this problem. The elastic medium fills the outside of a 
spherical cavity of radius R. Shear stresses are applied to the surface of this cavity, i.e. 
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_ 0 XoIr=R-X~lr=R =AsinO, 0<~0~<~ (1.12) 

It is required to find the stresses and displacements. Since there is axial symmetry, we must put 
n = 0 in all the previous formulae, since by (1.2) T~0(r, 0) = x_, wo(r, O) = w(r, 0). Using the second 

. • s , ~  

formula of (1.1), written m terms of transformants, and taking (1.12) into account, we find that 
x*o(R, 0) = 2Acos0 and correspondingly (Ski is the Kronecker delta) 

Xok (R) = 4A(2k + I) -l 8ki (1.13) 

If we construct a solution that is regular at infinity, then, in formula (1.11) for x~(r) we must put 
Xak = 0 and obtain Yak from condition (1.13); we will thereby find the transformants x~(r )  and z~(r) .  
Then, using the corresponding inversion formula (1.4), we finally obtain 

X,o(r,e) = 3M cose, 
4gr ° 

, M c o s 0  M = 8~AR3 (1.14) 
zo( r , O ) = -  2rcr 2 ' 

It can be shown that M is the torque produced by the shear stresses (1.12). 
If we now allow R to approach zero and the constantA to approach infinity, so that the torque remains 

unchanged and equal to the specified M, formulae (1.14) give the stress field and the displacements 
from the torsion centre at the origin of coordinates. 

As can be seen, the new functions introduced can be found fairly simply. By determining them the 
functions On and wn can be found as follows. Using the obvious linear combination of Eqs (1.19), we 
obtain differential equations for On and Wn, which differ solely in the right-hand sides and can be solved 
simply using integral transformation (1.3). As a result, we arrive at the formulae 

Rv. (r,°) I =-Isint..(e:  Bsi,,2 t .  ll -inllZ. (r'n  jat 

- a , .   .lfcosO) .lfcost) • ,,(e,t) = , Z  k(k (1.15) 

This formula is unsuitable when n = 0, i.e. for axisymmetric problems, but in this case, putting 
n = 0 in (1.9), we can obtain the simpler formulae 

B°o'rO'l ' 
wo(r,O) = sin"'-O 0 Zo (r't) 

(1.16) 

2. THE R E D U C T I O N  OF P R O B L E M S  OF STRESS C O N C E N T R A T I O N  IN 
S P H E R I C A L L Y  M U L T I - L A Y E R E D  MEDIA TO A SYSTEM OF 

E Q U A T I O N S  AND AN E F F E C T I V E  M E T H O D  OF SOLVING IT 

Consider the following problem. In an unbounded spherically multilayered elastic medium, arbitrarily 
loaded by body forces, there are defects in the form of cracks or thin inclusions, situated on the spherical 
surfaces where the elasticity constants change. It is required to determine the stress and displacement 
distribution in such a medium. 

We will denote the radii of the spherical surfaces on which sudden jumps in the elasticity constants 
occur by Ri(i = O, 1, 2 . . . .  m)  so that when Ri-~ < r < Ri Poisson's ratio and the shear modulus take 
values ~ti and Gi, where R_I = 0, Rm+ 1 = oo. We take as the fundamental unknowns the functions 
introduced above, the Fourier-Legendre transformants of which are given by (1.6), (1.8), (1.10) and 
(1.11), and each layer has its own arbitrary constants iX°i~ 1, iynO, ~ and elasticity parameters ~ti and G i. 
For example, for unk(r) we have the formula 

yo._k,. + ..l k-l o-, -  o(r ) iun~(r) =i ,-,~r ilxk +i Ankr +i Y~r ilJ, k - i  Ynk r-k-I +i 

ip.~ = k - 2 + 4 P . i ,  ilx-~ = k + 3 - 4 1 x  i, i=0,1 ..... Ri_l < r < R  i 
(2.1) 

Similar formulae exist for the remaining transformants 
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° ° 

iZnk(r), iZnk(r), iOmk(r), i 'gnk (r) ,  i'Cnk(r) (2.2) 

Here, in order to ensure that these transformants are regular at zero and at infinity, we must 
put 

oY~ =o yO =o r,~ = 0. m+, X.k =..÷, X °  =.+,  X~k = 0 (2.3) 

When writing (2.1) we took into account the fact that both forces may be applied to each spherical 
layer and that each force may give rise to its own stress and displacement field. Transformants (1.8), 
(1.10), (1.6) and (1.11), corresponding to this field, will be denoted by :z~k, izOk, iknk,'*O t~:Jrnk,--O itnk,-O ftnk.-*O Since 
we can assume that this field arises in an unbounded medium with constants Pi and G~, the components 
of this field can always be determined using well-known formulae of the theory of elasticity, and we 
will therefore assume the transformants mentioned to be known. Hence, we need to determine the 
constants "tXnk, iXn~ 1, iYnk, iYn°~ 1 (i = O, 1 . . . . .  m + 1). Because of the introduction of the functions 
z(r, O, tO), z*(r, O, tp), x(r, O, cO), x*(r, O, q~) this problem splits into the problem of finding ",Xnk, iYnk and 
• ,X~ 1, iY~ 1 separately. 

We will write the method of solving this problem initially as it applies to ",Xnk, ,'¥nk. We must primarily 
ensure that the displacements and stresses are continuous for r = R i (i = O, 1 , . . . ,  m) .  In this case we 
are considering the stresses Xr0 and x,v, in terms of which x* is expressed, and the displacements u0 
and u~, which define z*. This leads to the need to equate the function Znk on the ith layer with r = Ri, 
divided by 2Gi, to the analogous value of the same function on the (i+ 1)th layer, divided by 2Gi+l. 
The continuity of the stresses Xr0 and Xr~ with r = Ri leads to an analogous operation with the function 
17". 

This holds provided that there is no defect (a crack or an inclusion) in the elastic medium when 
r = R i ( i  - -  0 ,  1 . . . . .  m ) .  Since we are proposing to consider the case when there is a defect on the 
spherical surface r = Ri in the section 10(oh ~< 0 ~< o~2), we need to introduce the jumps 

(2Gi)-i z~ (Ri - 0, 0) - (2Gi+,)-' z*n ( Ri + O, O) = (z*~ ( Ri, O)) (2.4) 

• ".(R, - 0 . 0 ) -  + 0.O) = 0 to 

and their Legendre transformants 

I I III I sint (z. n(Rit)) ~nl(cost)dt= iz~t i=O, l  ..... m (2.5) 
to ( x . ( R i . t ) )  H ,x~,[ ' 

We will write the condition for the displacements and the stresses to be continuous when r = R i 
(i = 0, 1 . . . . .  m), taking into account the presence of the jumps (2.4) and (2.5), in the form 

ix.ke  + ir, R _ i+lX   i+lr  Ri'k-t 
2G i 2G i 2Gi+l 2Gi+l 

iXnk (k - I)R: -| -i Y,,k (k + 2)R[ k-2 -i+I X,,k (k - I)R :-| + 

+i+tY,,k(k+2)R'[k-2=2iT~t, (i = 0,1 ..... m) (2.6) 

Here 

iZ*n, =', znk" %+, Z*n°(RIX2G,+,) -' -', Z*°(Ri)(2Gi) -I 

iT;k =i ~nt d-i+l 

In order to determine the coefficients ",X,k and iYnk from (2.6), we will introduce the vectors 

U 'l N::l x i=  iy  , f i = 2  ° , i=0,1 ..... m+l  

which enables Eqs (2.6) to be written in the form 

(2.7) 
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aixi I biXi+l = f i ,  Xi+l = cixi - bil[i; ci = b/lai 

'R'kG':' RT'-'GT' I bi IIR~G[+I| ~-'-'~--' I _ t t = z " i  " J i + l  

~, -I (k_~)R,~- ,  _~k÷2)R;~-~ ' II(k-~)R~ ÷' - ( k+2) R;  k-~ 

Using representation (2.8), the solution of Eqs (2.6) must be obtained in the form 

j - !  
O) /.',(1+1)/.,-16. xj =CJy_,x O- Y. ,.. j_, ~t " t .  i=O,m 

l=O 

Here 

C~/) =cjcj_,...ct, l < j; C~t) =cj, l= j; C~/) = I, l < j 

where I isthe 2 x 2 identity matrix. 
Here, by (2.3) 

(2.8) 

(2.9) 

(2.10) 

II I n ° l  " °Xnk -b. =fro + y- D~m)ft (2.12) Bm 0 ~+,~, I=o 

Bm =a,,iC°~-iIB~OB~) B~,~ ) 11 D~ m)=~'~,'..m-l t~'4t+l)b-I = I ~ '  , 

Solving system (2.12) we obtain 

oX~ --- a;l  [ b ~ " ~  - b0c~')e2k ] 

. . ,~, = aTdts~')e~ ° - ~ " e 2 ,  l 

Here, by (2.7), (2.8) and (2.12), (2.13) we have 

bo(~ ') " "'mP-k-i~-"-',n.,, b[7 ~ = - ( k  + 2)Rm k-2 

[mZ=" ] r ° = 2 + z (,z2,dko" +, r . ; 4 ; ' )  
I=0 

I m-I * i,m ] 
F,~ = 2 mT~ + Y. (tZ~d[b" +t Tnkd,, ) 

1=0 

Formulae (2.9), (2.11) and (2.14) completely define the unknown coefficients occurring in the expres- 
sions for the functions z~(r) and X*k(r). 

We will use this scheme to determine the remaining coefficients iX~,land iI~nklQ = O, 1 . . . . .  m + 1), 
for which we will write the condition for the functions Unk(r), Znk(r) and a,r~(r), Xnk(r) to be continuous 
on each spherical surface r = Ri (i = O, 1 . . . . .  m), taking into account the presence of the defect, i.e. 

1 1 involving the Legendre transformants iZnk, iXnk of the jumps 

z .  (R  i - 0 ,0 ) (2 (3 / ) - t  _ z .  ( R i + O,O)(2Gi+l )-'  = (z,, ( Ri, O)) 
(2.16) 

z n ( R t - O , O ) - z n ( R i + O , O ) = ( ' t n ( R i , O ) ) ,  O ~ l  o 

ak," 
(2.13) 

(2.14) 

(2.15) 

where 

In order to obtain the values of these vectors we put i = m in (2.8) and substitute the expression for 
Xm, taken from (2.9) using (2.11). As a result we obtain 

xo :Ao k H x..: ! 
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defined by formulae similar (2.5). 
Introducing the vectors 

uo (ei)(2a~+~)-~ -~ u° (e~)(2~) -~ i [ ' ]nk  ----i Unk q ' i + l  

' z°k(Ri)(2Gi+~) -I Z°k(RiX2Gi) -I iZnk ~i Znk "t'i+1 -- i  

0 o o ( e , )  i~,~ =i o,~ +i+~ o,,,~(RD-i 
, ~:o(e,) o irnk =i 'gnk + i + l  --i "[nk(Ri) 

we can write the displacement continuity conditions 

o~(i)iX,~ _(i) . X , k  + ~(i)iy.~ - p .  i., - ( i )  .,Y,~ =. V,~, i = 0,1 ..... m ~ li.l., i + l  

-,~+#e? -t ,  + I 2~,+, ~-,+,~q+~e?~, - k -  t 

p.~__ R; k-' [ ,j.Ze~ -l ] 
2Gi I ip~_~(k + I)R~ -k ' 

and the stress continuity conditions 

~"'-- 2c,+, ],+,~._~(k ÷ +l).i~ - 

-") X,,~ +8")~Y~ -(o .Y~k , ¥ ( i ) i X n k - T *  i+ --~* i+, =.  Snk, i = O , l  . . . . .  m 

(2.17) 

(2.18) 

: I "'R R.-p--~ ll_.~+.m~ ~-k~' e: -~= • ~ 

(2.19) 
' II--i+J Pk+lRi 1 - k 2 

igk+2Ri - k  - 2  i+dxk+lRi - k -  2 
R: -3= ,~Ifk+l)e~ -kfk+2) '  R: -3= ,+~t I fk + 1)R~ -k(k + 2) 

We can reduce the system of equations (2.18), (2.19) to Eq. (2.8), already investigated, if we introduce 
four-dimensional vectors and the corresponding matrices 

_[iXnk[ II:S22 1 ~o{(i)~(i) u ~(g(i)[~(,i)~ ( 2 . 2 0 )  ,,,-n,v.~[ r,= ; a,=~(,)  8(i) r b,=]./.,~ S~")] 
Consequently, the solution of system (2.18), (2.19) can be written in the form (2.9), but the vectors 

and matrices must be taken as in (2.20). Here formulae (2.11) still hold, only instead of 0Xnk and m +lYnk 
we must take the vectors OXnk, m+ 1Ynk. It can be shown that formulae (2.14) hold for determining them 
with the following correction: 0X,~ and ,n+lYnk must be replaced by Xnk and m+lYnk, while F~nk and Fnlk 
must be replaced by 

m - I  I m i ,m 
F ° =.v.~ + X (a~; ,v.,  + a~, ts.k) 

t=O 
,,,-I (2.21) 

F~, =.s.k + X " "  (d 10tV,~ + dti'~tS,,k) 
I=0 

(m) respectively, where in the representations of the matrices (2.13) their components Bjk and d]~ " are 
2 × 2 partitioned matrices and, in particular, the numbers b ira1 and b'~l must be replacedby the matrices 
8(. m) and 13 (m), respectively. 

Moreover, in the formula for m+lYnk the matrix Am must be replaced by the matrix Am = 
B(m)8 (m) B (m)o(m) Hence, all the coefficients ",Xn~, iY,,k, "~nk 1, i Y ~  are obtained, and knowing them we 00 * --  f0 P .  • 
can determine the transformants (2.1) and (2.2). 
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The solution of this problem will be completed if we obtain the jumps (2.4) and (2.16). To obtain the 
corresponding equations we need to substitute the coefficients obtained into (2.1) and into the similar 
formulae for (2.2) and invert the Legendre transformants obtained. By subsequently satisfying the 
conditions at the defect in the Fourier transformants we can obtain integral and integro-differential 
equations for determining these jumps. 

In order not to obscure the matter with lengthy calculations, we will carry out these operations in a 
special case of the problem under discussion. 

3. R E D U C T I O N  OF THE PROBLEM OF THE STRESS 
CONCENTRATION NEAR A CRACK WHEN ACTED UPON BY A 

TORSION CENTRE TO AN INTEGRAL EQUATION 

We will assume that the spherically multilayered medium described above is subjected to a torsion 
centre with torque M at the origin of coordinates. In view of the axial symmetry (the required and 
specified functions are independent of (p) we must put n = 0 in all the formulae presented above. The 
stress and displacement fields will be determined solely by the functions Xr¢, u~ and, by (1.1) and (1.9), 
by the functions 

IZo(r, 0 1 a . 3 Zro(r' 0) N 
RZO(r, 0 = s in0   s'n12Gu (r, (3.1) 

respectively. 
In the case of the loading considered, in relations (2.6), by (1.14), we must take 

*o 3 M cos 0 *o M cos 0 *o *o 
oXo (r, 0)= 4~cr 3 , oZo (r, 0) = 2~r2 , i'Co (r, 0)=iZo (r, 0 ) = 0  (3.2) 

i = l ,  2 . . . .  m 

and therefore 

MSk.j MSk,l *o .0 
°'C°*°k(R°)= 2~¢d~ ' °Z°*°k(R°)=-3~ '  i 'c°~=iZ°k=O i = l ,  2 . . . . .  m (3.3) 

To solve this problem we must first solve the system of equations (2.6) using (2.9) and (2.14). To fix 
our ideas we will confine ourselves to the case of a two-layer medium (m = 0) and we will assume that 
there is an interphase crack at r -- R0, i.e. 10 = [0, co] in (2.4) and (2.5). 

If we assume that the sides of the crack are not loaded, we have (x~(Ro, O)) = 0, 0x0~ 1 = 0 and therefore, 
by (2.6) and (2.15) 

Fo ° = 2[o~ I -(2Go)-lOZo*~(Ro)], Fdk =-oXo°(Ro)2 (3.4) 

Moreover, by (2.10) C~-1 = I and hence B0 = a0. 
In this case, of all the coefficients in Eqs (2.6) we must only obtain 0X0k and 1Y0,. We find them using 

Eqs (2.14), taking (3.4) and (3.3) into account. We obtain 

*l +g~ *1 +gO 2(k-  1)G o oZok (3.5) 2(k + 2)G o oZok 
0Xok = g~'tk , I ~ k  = Rok_l~, k 

% [qO, q ~ ] = ~ [ k + 2 - 3 ¥ ,  k+21, ¥ k = 2 - ¥ + ( l + ~ / ) k ,  ¥=  
Gi 

Substituting these expressions into the corresponding formulae for iz~,(r) and ix~(r) w e  obtain from 
(2.2), with i = 0 and i -- 1 (n = 0) and taking (2.3) into account, the Legendre transformants of the 
functions z~(r, 0) and x~(r, 0) when 0 < r < R0 (i = 0) and R0 < r < oo (i = 1). Subsequent inversion 
using the appropriate formula from (1.4) with n = 0, enables us to obtain the values of these functions. 

For example, for x~(r, 0) when 0 < r < R0 we will have (using (3.2)) 
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o)-- CoT(, (Ro, 
0 

+2M(4xr  2)-I cos 0 ° (3.6) 

In order to obtain the equation for determining the jump 

(the first equations follows from (3.1)) we must implement the condition at the defect (in this case, a 
crack): the stress x~,(r, 0) is equal to zero on the sides of the crack r = Ro - 0 and r = Ro + 0, which 
means that we must do the same for x~(r, 0). Since the condition (x~(Ro, 0)) -- 0 has already been used 
to obtain (3.5), it is sufficient to implement the condition 

Xo(Ro-*,0) = 0, 0 ~ 0 ~< to (3.8) 

Substituting (3.6) into (3.8), we obtain the necessary equation for determining the required jump 
(3.7). In order to reduce it to a simpler form, we must take into account the fact that 

(k + 2)(k - 1) = k(k + l ) -  2, VoP k (cos O) = k(k + 1)P k (cos 0) 

This enables the equation obtained to be written in the form 

(Vo-2)Yo(O)=-AcosO,  0<~ 0<~ to; a =3M(4gR~G0) -I (3.9) 

o 

Yo(O)=IX(t)sintSo(O, t)at, so(o, t)= ~, 2 k + l  pk(cos0)Pk(cOSt) 
o k=o 'Yk 

In order to convert the integro-differential equation obtained into an integral equation, we carry out 
the following operations. Bearing in mind that 

(V 0 - 2)y(0) -- -ly(e), ty(O) = y"(O) + ctg 0y'(0) - 2y(0) (3.10) 

and/Pl(COS 0) = lQl(COS 0) = 0 (Q(z) is a Legendre function of the second kind), we write the general 
solution of  the differential equation corresponding to (3.9) and (3.10), regular at zero, in the form 

. 

Yo(O) = AIcostK(O, t)dt + Pl(cos0) -- f ' ( 0 )  (3.11) 
0 

where C1 is an arbitrary constant, and its fundamental function (solution) has the form 

x/~K(0, t) = 2sin t[P I (cos 0)Q I (cost) - Pi (cost)QI (eos0)] 

Pi (cos 0) = cos 0, Qi (cos 0) = cos 0 In ctg ~ 0 - 1 

Hence, the integral equation of the problem considered can be finally written in the form 

w 

SX(t)sint So(O, t)dt= f* (O), O~ 0<~ to (3.12) 
0 

3X]~'f° (t) = (C I + 2A)cos 0 - 2A(I - 2 cos0 In c o s ~  0) 

(the expression for the right-hand side is obtained after evaluating the integrals in (3.11)). The arbitrary 
constant Cl which occurs here is obtained from the condition for the crack to be closed, which, by virtue 
of (3.7), can be written as 

Io 

Isi. ox(e)ao = 2alsi. e(u,(e, oo))]~' =o (3.13) 
0 
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4. SOLUTION OF THE INTEGRAL EQUATION 

We first separate the irregular (weakly polar) part from the kernel (3.9) of integral equation (3.12). 
To do this we use the easily verified relation 

So(O, t)= 2(y + l)-1[So(O, t)+3/~(y-l)S~(O, t)] 

where 

So(0, t)=~- 5'. Pk(cosO)P~(cost), S~(O, t)= ~. P~(c°se)Pk(c°st) (4.1) 
~- k=o k=o 2yk 

The first of these series (the weakly polar part of the kernel) is added [6] to the discontinuous 
Weber--Sonin integral, i.e. 

So(O, t)= Wo(tg~O' tg~t) Wo(x, y)=TJo(tX)fofty)dt (4.2) 
2cospj0cospjt ' 0 

However, the second series from (4.1) will also not be a continuous function. In order to convince 
ourselves of this and to separate the discontinuous part, we note the well-known relation 

k•--i 2k+l  2~'-k(k+l ) P~ (cos 0)P k (cos t) = - 12 - in sin O2 - In cos t2 

Then, if we take into account the directly verifiable equations 

1__= ! 2-~' l 2k+l k(~ 1 13 ) 
P=I+,t' k+p 2k(k+l  = ,2(k+l) k+p 

it can be shown that 

l [ 1+2~/ lnsinO+2 ] s (e, O= 2(¥+I---'-)L2(2-',I) Ro(O, t) (4.3) 

i p 
e.0(o, t)=  ek(cosO)ek(cost), Pk = 2k+------i k+p 

k=0 k 

The last function will be continuous. 
Taking (4.1) and (4.3) into account and also condition (3.13) for the crack to be closed, integral 

equation (3.12) can be written in the form 

co I 
L• = .[ [S o (0, t) + 2LR 0 (0, t)] sin t )C(t)dt = ~, C~ Pii (cos 0) - 

0 i=O 

-g2(O), 0~< 0<~ co; 4~,--3(y-1)(y+l)  -I (4.4) 

A(¥ + 1) 0 ® t 
g2(0) = ~ (I + 2 cosO In cos-~), Co = ~! sin t Z(t) In cos 

where C~' is a new arbitrary constant, related to Cl. 
According to the structure of the right-handside, the solution of Eq. (4.4) must be constructed in the 

form of a series 

l 
X(O) = Y. cTxi( 0)- Z2 (0) (4.5) 

i=0  

each term of which satisfies one of the equations 

Lxi(O)=gi(O), 0 ~ 0 ~ c o ,  i=0 ,  1, 2; gi(O)=P/(0), i=0 ,  1 (4.6) 

If these equations are solved, the constants C~ and C~' are found by implementing condition (3.13) 
and the last equation of (4.4). 

In order to reduce Eq. (4.6) to a known form, we make the replacements 
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0 t ¢0 
t g ~ = a x ,  tg~-=ay, a = t g ~ -  

Xi(y ) = 2a~(2 arctgay) Fi(x ) = qi(2arctgax) 
[1 + (ay) ~ 1~ ' [1 + (ax) 2 ] 

(4.7) 

Then, instead of (4.6), we will have 

I 
~[W0(x, y)+kDo(x, y)]yXi(y)dy=Fi(x), 0 ~<x~<l (4.8) 
0 

Do(X, y)=[2acosOcost Ro(O, t)]e=2arctgax,t=2arctgay 
z Z 

Integral equation (4.8) has already been encountered in contact problems [8]. To solve it approximately 
it is convenient to use the method of orthogonal polynomials [8], in view of the presence of the spectral 
relation A5.2 from [8], according to which, the solution of Eq. (4.8) is constructed in the form (P~F 13(z) 
is a Jacobi polynomial) 

Xi(Y)= ~, X~ P°-k~(I- 2y2) pkO.-k~(l_2y2)= pzk(¢l_ y2 ) 
k=o 41 _ y2 ' 

The next step in the method of orthogonal polynomials [7], as it applies to this equation, reduces it 
to an infinite system 

Yj(i'+~,~,djtrt~i) Fj ̀i), i=0 ,  1, 2; yj!i) X (i,. v j =  l " ( j + ~ )  (4.9) 
k=o = = v j  ~ , j 2 , / ~ 7 + ! )  

* 0 P2j(41-a-2(tg I//20)2 ) )do, Q c0)-- 
0 2Vj a 2 c ° s ~ 0  4 1 - a - 2 ( t g ~ 0 )  2 

dj, = {.~ R°(O" t)tg~Otg~tQ~ (O)Q~ (t) dOdt 
0 2VjVk a3 c°s I~0c°s~ t 

The infinite system obtained must be solved approximately by the reduction method; the 
convergence of this method can be proved using the scheme described earlier in [8]. 

If the infinite systems (4.9) are solved for i = 0, 1, 2 and the constants Co and C1 are obtained from 
the conditions indicated above, the solution of the equation under discussion is obtained from (4.5) 
or, by (4.7) and (4.9), from the formula 

2ag(2arctgax) ~ Xk P°-~(1-2x2) 
X(x) = [ 1  + (ax) ~1~ =*=o l-~----x 2 '" 

(4.10) 

• o c;xl,,_xl2, xk = CoXl + 

5. C A L C U L A T I O N  OF THE STRESS INTENSITY FACTOR 

For the problem in question the stress intensity factor is found from the formula 

rm = e~+o ~ (R°e)42'rJ~° ( e -  co) 

Taking relation (3.1) into account we obtain 

1 0,. • 
x,~(Ro, 0)= s i - ~ s m t x o ( R  0, t)dt 

(5.1) 

(5.2) 
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Using (3.7) and (3.9) we obtain from (3.6) 

Ro%(R o -0 ,0)=Go[(V o -2)Yo(e)+Acos0], 0~< 0~<~ (5.3) 

In view of the fact that 

1 f°. tVoYo(t)dt = dYo(O) 
sin 0 ~s,n dO 

formula (5.1) can be written, using (5.2), in the form 

K n l = -  2 ~  G° 0-,m+olim 0"~-~-~ d Yo(0)ard (5.4) 

When obtaining this formula we took into account the fact that all the functions which occur as terms 
in the formula for x,~(R~ 0), which have a finite limit as 0 ~ co + 0, drop out. On the same basis, by 
virtue of (3.9), (4.1) and (4.3), instead of (5.4) we can write 

21t 2 0,~'S"~- ~ m 
- . I - -  lira rff(0), Yo(a) = IX(t)sintS0(O, t)dt (5.5) Kin= ~/Roo_,~+o "t+-------i-- o 

If we take (4.2) into account in the last integral and make replacement (4.7), we obtain the 
relation 

Yo(0) = Yo (2 arctg ax) = 

Hence it follows that 

and hence 

I 
Yo (x) 17o (x) = j" W o (x, y)X(y)ydy (5.6) 

[1 + (ax) z ]-~J' o 

2aYe(O) =[! + (ax)2 ] ~ l~ff(x) + a x ~  Yo(x) 

I ~  s ~ _ ~  ,4N N =  lim ~x2-1}~¢x) 
Kill  m -- sin to 1 +'-"'T' x ~ l + 0  (5.7) 

lim [2arctgax--2_arctga = ~ 2  O 
A=x~!+0~ x z - 1  

In order to take the limit for N we must bear (5.6) and (4.10) in mind, which enables us to write 

o ' y)P2k( ll - y2)ay N = X k lim A~(x) Ak(x ) = ~ = 
= x--,l+o (x 2 _ 1 ) -~ '  o y-! 41 _ y2 

= F(~ + k)[2F(~ + 2k)k! ]-Ix-2k-IF(~ + k, ~ + k; 3/2 + 2k; x -2), x > I (5.8) 
The expression for the last integral in terms of the hypergeometric function is taken from [8]. Carrying 

out the differentiation using the well-known rules for the differentiation of hypergeometric functions 
and extending the result obtained analytically in the neighbourhood of unity, using formula (9.131.2) 
from [9] we obtain 

lim ~/x" - IA~(x) = (5.9) x~J+o k!F(~ + k) 

Using (5.7), (5.8) and (5.9) we finally obtain 

2g see~to ~. X k 
KUl = 1 + y ~R o sin co ,=o F ( ~  + k)k! 
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If there are no layers, i.e. Go = G1, "/= 1, k = 0, integral equation (4.8) has an accurate solution, as 
was shown previously in [5]. In this case the infinite systems degenerate into explicit formulae 

Yk (i) = F/(i) (i = 0, 1, 2; k = 0, 1, 2 . . . .  ) 

6. CONCLUSION 

The proposed method has been described as it applies to the case when the defects are situated on 
spherical surfaces where the elasticity constants change (interphase defects). To cover the case when 
there is no interphase defect, one can proceed in two ways: (1) introduce, in addition, two spherical 
layers with the same elasticity constants, on the adjacent boundary of which the defect is situated, and 
(2) together with the term which takes into account the action of the body forces, applied to the spherical 
layer, where the defect in question is situated, one can introduce a discontinuous solution of Lamt's 
equations for this defect. The second way has the advantage that it enables one to cover the case of a 
non-interphase defect of arbitrary shape. 

The method can be extended fairly simply to the case of a bounded spherically multilayered medium. 
We will describe the additional operations which are necessary to do this. 

Suppose the spherically muitilayered medium considered fills the region Ro <~ r <~ Rm Suppose that 
the displacements are specified on the boundary r = R0 and, consequently, their Fourier-Legendre 
transformants are specified also. We will denote this transformant of the function z*(r, O, q~) by Ank. 
Then, instead of the displacement and stress continuity conditions in (2.6) at r = R0 we must write the 
boundary condition 

+ ,tee, o-t-' + (e,o)= Ae (6.1) 

From this equation we obtain 1Y, a, and hence, from (2.7) we can write 

x, - - J_ , j ,+ , l ,x , ,  ÷ ¢ ' [ ~ A , - : = ( ~ o ) ]  
(6.2) 

The following formula holds for the remaining required vectors 

. - ,o) z .,. ~ t ~ z + ] ) , . - I ,  xj=~ ' ) - t  t T Z , ' j - I  "t "t, j = l ,  2 ..... m-1  
I=1 

(6.3) 

obtained in exactly the same way as (2.9). 
If we assume that the stresses and, of course, their Fourier-Legendre transformants, including the 

transformants x,a,(r) and x,~(r), are specified on the other boundary r = Rm of the elastic medium, similar 
operations are carded out. Suppose, for example, we are given the latter, i.e. x~(Rm) = Bnk. Then, instead 
of the displacement and stress continuity conditions at r = R,n in (2.6) we must satisfy the boundary 
condition 

(R.)  Ck- l)R. - .  re ft  + 2) (R.)2 = 2B,+ 

Using this, in the same way as for (6.2), we will have 

2N o 
- [B,~ -,nXnk (R m )] ( 6 . 4 )  x.= , ,re ° 

It only remains to obtain ~Xnk and mYn~. This is done using the same operations as when obtaining 
0Xnk and oYnk from the system of equations (2.6), i.e. we assume i = m - 1 in (2.8) and substitute (6.4) 
there, while the expression for Xm-t is taken from (6.3). We thereby obtain two algebraic equations for 
finding rXnk and mYnk. 
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